\(\int \frac {1}{(-2+x) \sqrt {3-4 x+x^2}} \, dx\) [2405]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 18, antiderivative size = 13 \[ \int \frac {1}{(-2+x) \sqrt {3-4 x+x^2}} \, dx=\arctan \left (\sqrt {3-4 x+x^2}\right ) \]

[Out]

arctan((x^2-4*x+3)^(1/2))

Rubi [A] (verified)

Time = 0.01 (sec) , antiderivative size = 13, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {702, 209} \[ \int \frac {1}{(-2+x) \sqrt {3-4 x+x^2}} \, dx=\arctan \left (\sqrt {x^2-4 x+3}\right ) \]

[In]

Int[1/((-2 + x)*Sqrt[3 - 4*x + x^2]),x]

[Out]

ArcTan[Sqrt[3 - 4*x + x^2]]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 702

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[4*c, Subst[Int[1/(b^2*e
 - 4*a*c*e + 4*c*e*x^2), x], x, Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0]
 && EqQ[2*c*d - b*e, 0]

Rubi steps \begin{align*} \text {integral}& = 4 \text {Subst}\left (\int \frac {1}{4+4 x^2} \, dx,x,\sqrt {3-4 x+x^2}\right ) \\ & = \tan ^{-1}\left (\sqrt {3-4 x+x^2}\right ) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.08 (sec) , antiderivative size = 21, normalized size of antiderivative = 1.62 \[ \int \frac {1}{(-2+x) \sqrt {3-4 x+x^2}} \, dx=-2 \arctan \left (\frac {\sqrt {3-4 x+x^2}}{-3+x}\right ) \]

[In]

Integrate[1/((-2 + x)*Sqrt[3 - 4*x + x^2]),x]

[Out]

-2*ArcTan[Sqrt[3 - 4*x + x^2]/(-3 + x)]

Maple [A] (verified)

Time = 0.27 (sec) , antiderivative size = 12, normalized size of antiderivative = 0.92

method result size
pseudoelliptic \(\arctan \left (\sqrt {x^{2}-4 x +3}\right )\) \(12\)
default \(-\arctan \left (\frac {1}{\sqrt {\left (-2+x \right )^{2}-1}}\right )\) \(13\)
trager \(\operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) \ln \left (-\frac {\operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right )+\sqrt {x^{2}-4 x +3}}{-2+x}\right )\) \(33\)

[In]

int(1/(-2+x)/(x^2-4*x+3)^(1/2),x,method=_RETURNVERBOSE)

[Out]

arctan((x^2-4*x+3)^(1/2))

Fricas [A] (verification not implemented)

none

Time = 0.37 (sec) , antiderivative size = 18, normalized size of antiderivative = 1.38 \[ \int \frac {1}{(-2+x) \sqrt {3-4 x+x^2}} \, dx=2 \, \arctan \left (-x + \sqrt {x^{2} - 4 \, x + 3} + 2\right ) \]

[In]

integrate(1/(-2+x)/(x^2-4*x+3)^(1/2),x, algorithm="fricas")

[Out]

2*arctan(-x + sqrt(x^2 - 4*x + 3) + 2)

Sympy [F]

\[ \int \frac {1}{(-2+x) \sqrt {3-4 x+x^2}} \, dx=\int \frac {1}{\sqrt {\left (x - 3\right ) \left (x - 1\right )} \left (x - 2\right )}\, dx \]

[In]

integrate(1/(-2+x)/(x**2-4*x+3)**(1/2),x)

[Out]

Integral(1/(sqrt((x - 3)*(x - 1))*(x - 2)), x)

Maxima [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 9, normalized size of antiderivative = 0.69 \[ \int \frac {1}{(-2+x) \sqrt {3-4 x+x^2}} \, dx=-\arcsin \left (\frac {1}{{\left | x - 2 \right |}}\right ) \]

[In]

integrate(1/(-2+x)/(x^2-4*x+3)^(1/2),x, algorithm="maxima")

[Out]

-arcsin(1/abs(x - 2))

Giac [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 18, normalized size of antiderivative = 1.38 \[ \int \frac {1}{(-2+x) \sqrt {3-4 x+x^2}} \, dx=2 \, \arctan \left (-x + \sqrt {x^{2} - 4 \, x + 3} + 2\right ) \]

[In]

integrate(1/(-2+x)/(x^2-4*x+3)^(1/2),x, algorithm="giac")

[Out]

2*arctan(-x + sqrt(x^2 - 4*x + 3) + 2)

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(-2+x) \sqrt {3-4 x+x^2}} \, dx=\int \frac {1}{\left (x-2\right )\,\sqrt {x^2-4\,x+3}} \,d x \]

[In]

int(1/((x - 2)*(x^2 - 4*x + 3)^(1/2)),x)

[Out]

int(1/((x - 2)*(x^2 - 4*x + 3)^(1/2)), x)